Nitrogen Management

Katherine Pope UCCE Sacramento, Solano & Yolo Counties

Nitrogen Management Overview

- Nitrogen in soil, uptake
- How to manage nitrogen efficiently

Take-Aways:

- N is dynamic, but can all \rightarrow Nitrate
- N entry points easily overloaded \rightarrow Leaching
- Match application with Demand Rate & Timing
- Irrigate to keep N in rootzone (top 3')

Need to understand the **different forms** of N to know **when** and **how** N is available to tree roots, vulnerable to leaching.

Soil Organic Matter

Ammonium (NH₄⁺)


N tied up in organic molecules, not available to plants

Roots can take up N as ammonium Roots can take up N as nitrate

Nitrate

Immobile carbon and nutrient storage vault

Positively charged – can stick to the CEC in the soil Negatively charged – will not stick to CEC in the soil – can easily LEACH

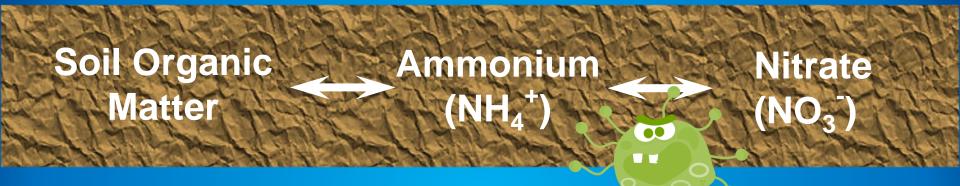
Rate depends on carbon, temperature, moisture, aeration CA soils, SOM \rightarrow Ammonium in weeks to months Higher %N (lower C:N) \rightarrow less immobilization. Analysis of amendments C:N important: <2% \rightarrow immobilizes

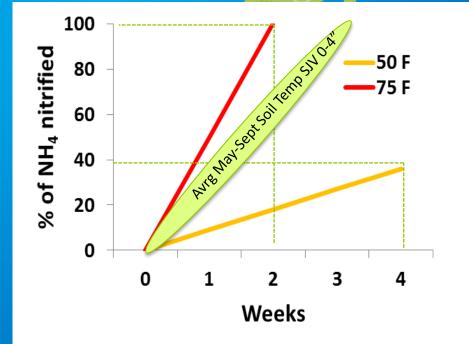
Elements of the Nature and Properties of Soils, 3/e by N. Brady and R. Well

Soil Organic Matter (NH₄⁺)

Nitrification ->

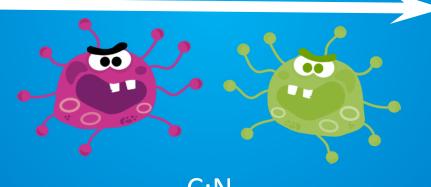
Nitrate


NO,


Rate depends on temperature

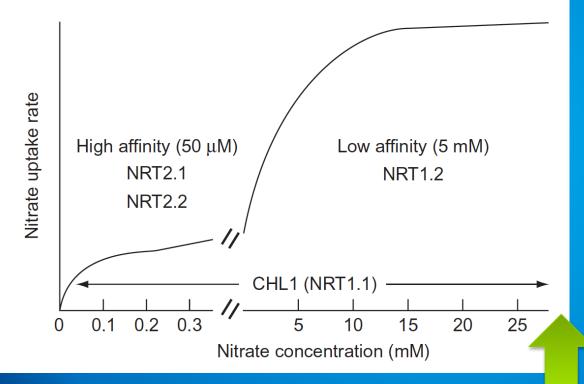
CA soils, Ammonium \rightarrow Nitrate in days to weeks

CA soils, most N eventually turns to nitrate


Elements of the Nature and Properties of Soils, 3/e by N. Brady and R. Well

Elements of the Nature and Properties of Soils, 3/e by N. Brady and R. Well

Soil Organic Matter (NH₄⁺)

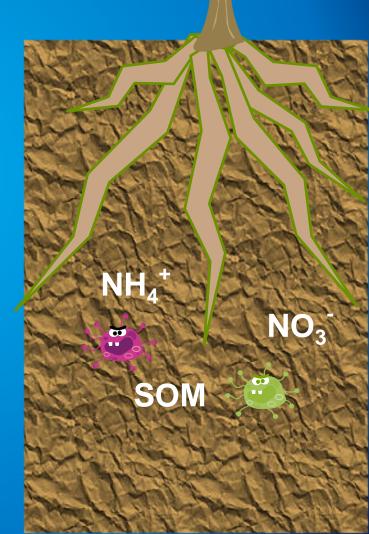


C:N Temperature Moisture Aeration

Elements of the Nature and Properties of Soils, 3/e by N. Brady and R. Well

trate

Nitrogen Uptake by Plants Is Limited by Transporters



Nitrate concentration in a typical fertigation event

Marschner, P. (2012). Mineral Nutrition of Higher Plants. Academic Press. Waltham, MA, USA.

Nitrogen Dynamics Recap

 N in many forms in soil – SOM, ammonium, nitrate - SOM is N storage N uptake: ammonium or nitrate - All N \rightarrow Nitrate eventually Nitrate doesn't stick in the soil • <u>N</u> uptake is highly regulated. More N applied \neq More N uptake, necessarily

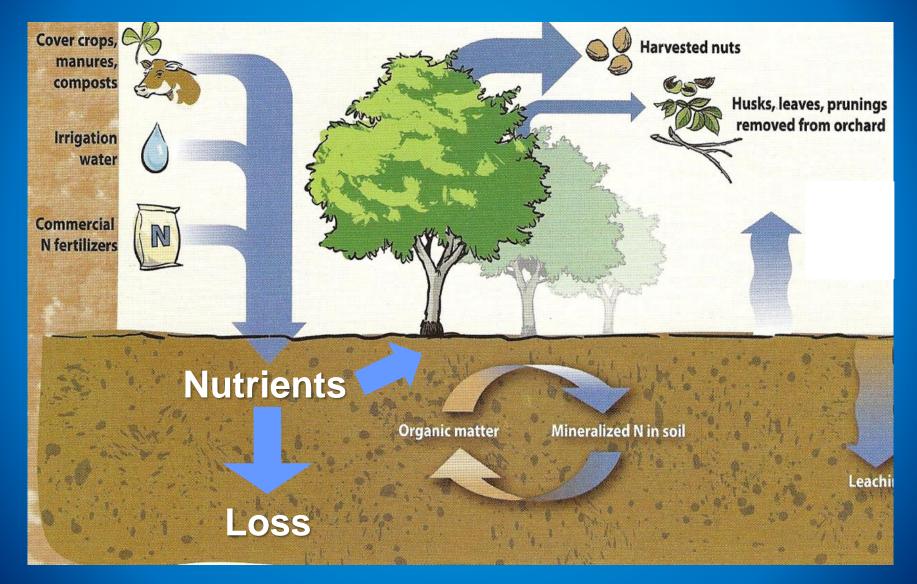
Managing Nitrogen Efficiently Take Aways 1) Demand depends on

crop & yield

2) Demand is steady over growing season

3) Roots in top 2-3 feet

Apply the *RIGHT RATE*


• Apply at the **RIGHT TIME**

• Apply in the **RIGHT PLACE**

Using the RIGHT SOURCE

- Apply the **RIGHT RATE**
 - Match SUPPLY w/ tree DEMAND
 - N uptake costs energy. Trees don't take up N if don't need.
 - Fertilizer + Organic N + Water

Supply = Demand

Kathy Kelley-Anderson et al: ANR Pub # 21623

How We Figure Out Rate Almonds, Pistachios, Prune, Walnuts

How We Figure Out Rate Example: Walnut

N / ton of nuts (in-shell, 8% moist) and assoc. hulls.

Site	2013*	2014*		
N Chandler	26 a	26 b		
D Chandler	31 a	31 a		
S Chandler	25 a	25 c		
N Tulare	25 a	24 c		
D Tulare	32 a	31 a		
S Tulare	27 a	27 с		
GRAND MEAN	27			

 Meat & Shell:
 25-32 lbs

 Hulls:
 0.5-2 lbs

 Other Scraps:
 0.5-2 lbs (?)

 New Growth:
 2-6 lbs**(?)

N / ton in-shell: 28-40 lbs

*Letters show dif's w/in cv. ** Based on Weinbaum's 0.13 lb N/tree, 50 trees/acre, 16 year old Hartleys

Nutrient Demand Rate by Crop

Species	N lbs / 1000 lbs Fruit	Source		
Almond	68 (kernel wt)	Muhammad, Saa, Brown et al (2013)		
Pome & Stone* Fruit	0.5-1	Apple: IFA, 1992;USDA,1963; Apple, Apricot, Peach, Pear, Plum: USDA, 1963; Peach: Maragoni and Rombola 1994; Pear: IFA, 1992		
*Cherry	2-2.4	Huguet, 1980		
Citrus	1.1-1.6	Rocuzzo, 2013; Krueger/Arpaia 2010		
Grape	0.8-2	Coombe, 1992; Mullins, 1992		
Pistachio	28 (CPC)	Siddiqui, 2014		
Prunes	6 (dry)	Hidalgo, In Press		
Olives	8	Angelo Rodrigues <i>et al.,</i> 2012		
Walnut (In-shell)	14-20	Pope, 2014		

Table compiled by Saa, Brown & Schellenberg, 2015

Demand for Growth Varies; Needs Much More Research. Rough Estimate:

- 0-10 lbs/ac for established nut orchards
- Max 30 lbs/ac for frequently pruned stone fruit

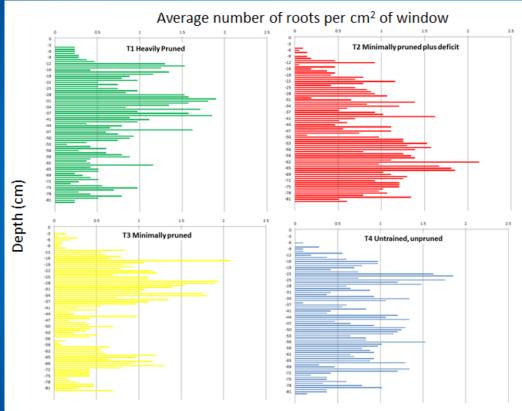
- Apply at the **RIGHT TIME**
 - Match w/ timing of tree demand, root uptake
 - Trees take up nutrients when needed, not when applied

How We Figure Out Right Time **Example: Walnut Monthly Fruit Nitrogen Added** 30 Previous Accumulation N Added in Month 20% 25 % Percent of total season N added per month 20 N sq1 10 20 29% 24% 5 27% 0 May June July Sept Aug

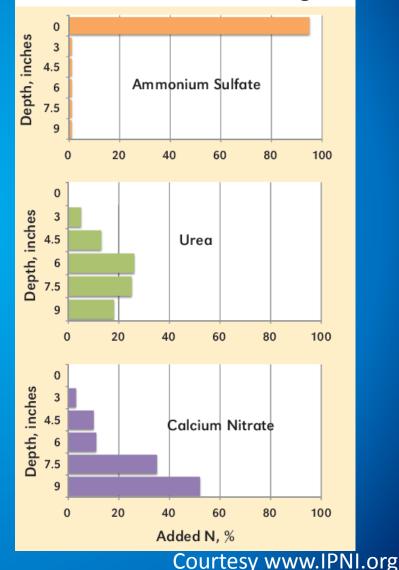
Nutrient Demand Timing by Crop

Crop	N / 1,000 lbs	Feb-Mar	April	May	June	July	August/ early Sept
Almond	68	20%	30%		30%		20% Sept
Pistachio	28			30%	20%	30%	20%
Prune	6		30%	50%	20%		
Walnut	14-20			25%	25%	25%	25%

General Formula*:


- No N application first month after bloom
- Divide rate over rest of growing season
- For early harvest, can add one post-harvest to refill reserves

- Apply in the **RIGHT PLACE**
 - Delivery to active roots
 - N moves w/ water
 - Minimize movement below root zone
 - Remember, nitrate doesn't stick in the soil. Easily leached.


Roots in top 30"

N moves 6-9" in 90 min

Surface N + 90 min irrig't

g. 3. Total number of roots per cm^2 of window area for the 2012 season by treatment.

Walnuts, Lampinen et al

4 R's of N Management • Using the **RIGHT SOURCE** -To the trees, Nitrogen is Nitrogen. -Trees will happily take up ammonium or nitrate -Difference = leaching potential,price, other soil considerations

• Using the **RIGHT SOURCE**

Fertilizer	Nitrogen (%)	Urea	Ammonium	Nitrate	Leaching Potential	Soil Acidifier	Comments
Ammonium Nitrate	34%		\checkmark	\checkmark	Medium	Medium	Nitrate N immediately available. Ammonium N half delayed.
Ammonium sulfate	21%		\checkmark		Low	High	Source of sulfur
Calcium ammonium nitrate (CAN-17)	17%		\checkmark	\checkmark	Medium	Medium	
Calcium nitrate	16%			\checkmark	High	No	Source of calcium
Urea	45%	\checkmark		\checkmark	Low	Low	
Urea Ammonium Nitrate (UN-32)	32%	\checkmark	\checkmark	\checkmark	Medium	Medium	Nitrate N immediately available. Remainder of N delayed.

5th R – Leaf MonitoRing

- Monitor impact of changing practices
- Deficiencies decrease yield before visual leaf symtpoms
- Protocol:
 - Sample in July
 - 6-8 ft from ground, tree periphery
 - Area of interest, scattered

- Apply the *RIGHT RATE DEPENDS ON YIELD, CROP*
- Apply at the *RIGHT TIME* –*STEADY MAY-AUG*
- Apply in the **RIGHT PLACE** -**IRRIGATE TO KEEP N IN ROOT ZONE**
- Using the **RIGHT SOURCE**

SUMMARY

- N is dynamic, but can all \rightarrow Nitrate
- N entry points easily overloaded → Leaching
- Match application with Demand Rate & Timing
- Irrigate to keep N in rootzone (top 3')