Dixon Resource Conservation District

3rd Groundwater Workshop

30 January 2025

Sustainable groundwater quality management in agricultural landscapes -The role of modeling tools

Thomas Harter University of California Davis

CENTER FOR WATERSHED SCIENCES

University of California

Agriculture and Natural Resources

University of California, Davis

Climate Change • Sustainable Agriculture Environmental Quality • Landscape Processe:

LAND, AIR AND WATER RESOURCES

Number of People in each County who use Household Wells (Domestic, self-supplied population)

Source: U.S. Geological Survey

https://www.circleofblue.org/2018/world/infographic-household-wells-in-the-united-states/

total active public supply wells in California: 8,396 with contaminated groundwater (before treatment): 1,659

State Water Resources Control Board, AB2222 Report to Legislature, January 2013

Predicted nitrate in shallow, recently recharged groundwater

Predicted nitrate in deeper groundwater used for drinking water

EXPLANATION

Predicted nitrogen concentration, in milligrams per liter as N

Source: USGS, 2015

Nitrate Pollution of Groundwater is Common in Agricultural Regions around the Globe

https://EuropeanWaters.eu / European Environment Agency, 2024

Risk of Nitrate Contamination in Domestic Wells and "State Small" Public Water Supply Systems

<u>Tools – Is My Well Near a Nitrate-Impacted</u> Well?

Recent Nitrate Trend

Analysis Tool

Risk of Contamination in Domestic Wells and "State Small" Public Water Supply Systems

Water Quality Risk by Section (All Contaminants)

high (> comparison concentration)

medium (80% - 100% of comparison concentration)

low (< 80% of comparison concentration)

unknown

Source: <u>State Water Board GAMA Online</u> <u>Tools – Aquifer Risk Map for Domestic Wells</u> and <u>State Small Systems</u>

Contaminants in Domestic Wells of High-Risk Aquifer Areas (statewide)

Nitrate in Groundwater: Where is it from?

Drinking Water Limit:

45 mg Nitrate /L

= 10 mg Nitrate-N / L

= 27 lb Nitrate-N / acre-foot

Global Soil Nitrogen Balance at the End of the 20th Century

Machine Learning: Well Nitrate(2000 – 2014) as f(Explanatory Variables)

Machine learning (Boosted Regression Tree) identified major predictors of groundwater nitrate

Ransom et al., STOTEN 2017

Relative Importance

UNIVERSITY OF CALIFORNIA

Nitrate forensics: Bayesian estimation of source fractions

Estimated nitrogen loading pdf at time of recharge [kg N/ha/yr]

(1970s - 1990s)

by crop / landuse type

Forensic analysis confirms the mass balance N loading to groundwater for some crops and landuse types

Research programs to develop and assess BMPs: Groundwater Modeling

...but we don't consider just the variability of the aquifer, also that of soils and crop-scape...

Henri and Harter, HESS 2019

What Happens to Nitrogen Surplus When Leached This Year as Nitrate?

Henri and Harter, WRR 2019

Groundwater Nitrate Sources: What to Do About It?

The Basics of Management Policy & Regulation

- Identify impacts (human health, environment, economy) and risk drivers
- Identify & prioritize parties to be regulated (universal v structured/categories)

Harter, California Agriculture, 2015

... identify potential polluters, control pollution, remediate, monitor... ...

California Water Quality Regulations

California – Regulations to curtail groundwater pollution from NPS

2012 Agricultural Order (Central Coast RWB)

2018 Revised ILRP (SWB – statewide precedence)

2018 Salt and Nutrient Basin Plan Amendment (Central Valley RWB)

California regulations to curtail groundwater pollution from agriculture: Irrigated Lands Regulatory Program overview

ILRP: Regulating nonpoint sources of nitrate pollution

- Identify impacts and risk drivers: GW Assessment Report
- Identify & prioritize parties to be regulated high vulnerability areas

Use machine learning to predict nitrate at 1 km scale (Boosted Random Tree)

UNIVERSITY OF CALIFORNIA

Ransom et al., STOTEN 2017

Estimated groundwater nitrate concentration (BRT) at 1 km² & 17 depths

Overlay measured/predicted nitrate occurrence with community locations

=> High Vulnerability Areas (HVAs) for nitrate

Central Valley, California

ILRP: Regulating nonpoint sources of nitrate pollution

- Identify impacts and risk drivers: GW Assessment Report
- Identify & prioritize parties to be regulated: high vulnerability areas

Growers are responsible for compliance

- Obtain coverage (initial application)
- Implement management practices
- Prepare plans and reports on practices

 \circ Template-based

Stay on farm/submit to coalitions (HVAs)

NITROGEN MANAGEMENT PLAN WORKSHEET

NMP Management Unit: _____

Grower's
Nitrogen Management Plan:

Annual Nitrogen Budget Reporting (by field)

1. Crop Year (Harvested):		4. APN(s):	5. Field(s) ID	Acres
2. Member ID#				
0 Norra				
3. Name:				
			15.	
CROP NITROGEN MANAGEMENT PLANNING		N APPLICATIONS/CREDITS	Recommended/ Planned N	16. Actual N
6. Crop		<u>17. Nitrogen Fertilizers</u>		
7. Production Unit 8. Projected Yield (Units/Acre)		18. Dry/Liquid N (lbs/ac)		
		19. Foliar N (lbs/ac)		
9. N Recommended (lbs/ac)		20. Organic Material N		
10 Acros				
TU. ACTES		21. Available N in Manure/Compost		
Post Production Actuals		(IDS/ac estimate)		
11. Actual Yield (Units/Acre) 12. Total N Applied (Ibs/ac)		22. Total Available N Applied (lbs per acre)		
		23. Nitrogen Credits (est)		
13. ** N Removed (Ibs N/ac)		24. Available N carryover in soil;		
14. Notes:		(annualized lbs/acre)		
		25. N in Irrigation water		
		(annualized lbs/ac)		
		26 Total N Credits (the second		
		20. Total N Creuits (ibs per acre)		
		27. Total N Applied & Available		
		PLAN CERTIFICATION		
28. CERTIFIED BY:		29. CERTIFICATION ME	THOD	
		30. Low Vulnerability Area, No Certification Needed		
DATE		31. Self-Certified, approved training progra	m attended	
DATE:		32. Seit-Certified, UC or NRCS site recommodation	mendation	
		55. Nitrogen Management Plan Specialist		L

**Your Coalition will provide the method to be used to estimate N Removed. Approved by the Central Valley Water Board 23 December 2014. Instruction numbering in this document differs slightly from the NMP template approved by the Water Board to accommodate this publication design.

ILRP: Regulating nonpoint sources of nitrate pollution

- Identify impacts and risk drivers: GW Assessment Report
- Identify & prioritize parties to be regulated: high vulnerability areas

CVGMC Network & **Top Commodities**

- Almonds: 875,015 ac
- Grapes: 478,751 ac
- Corn: 452,531 ac

Almonds

Idle

1.000.000

900.000

800,000

700,000

600,000

500,000

400,000

300,000

200,000

100.000

Almond

NOTE: Data shown is 2014 land use data

Acres

CVGMC Network and DACs

Courtesy of: CVGMC March 27, 2018 Meeting

ILRP: Regulating nonpoint sources of nitrate pollution

- Identify impacts and risk drivers: GW Assessment Report
- Identify & prioritize parties to be regulated: high vulnerability areas

Moving forward, two key questions:

... ag's most important pollution control device: water and nutrient management....

Increase crop N-use efficiency -- Decrease deep percolation

Basic Components	Management Measures	50 Practices
	 Perform system evaluation and monitoring 	3
Improve invigation and	✓ Improve Irrigation scheduling	4
drainage systems	 Improve irrigation system design and operation 	13
	 Other irrigation infrastructure improvements 	2
Improve fertilizer and manure use	 Improve rate, timing, and placement 	15
Change crop rotation	 Modify crop rotation or grow cover crops 	4
Improve storage and handlingImprove storage and during transport, storage and application		9

ILRP: Regulating nonpoint sources of nitrate pollution

- Identify impacts and risk drivers: GW Assessment Report
- Identify & prioritize parties to be regulated: high vulnerability areas

Research programs to develop and assess BMPs: Field Sites

landscape water and N fluxes (deep) vadose zone water and N fluxes groundwater N fluxes

Groundwater monitoring: 20 monitoring wells within top 5 m of groundwater

Nitrate in Groundwater:

Doing the Best - What Will the Future Bring, When?

Moving forward, two key questions:

Research needs: Assessment of BMP Impacts on

Public Supply Well in a Disadvantaged Community

Bastani and Harter, J Contam Hydrol 2019

Comparison against most popular (but slow) model software looks good for practical applications

Nonpoint Source Assessment Toolbox (NPSAT): application to the Central Valley - steady-state flow solution-UNIVERSITY OF CALIFORNIA

1945 Potential Groundwater Loading from All Sources

Legend

15 - 30

kg N/ha/yr

150 - 200

Apply N loading time series at high spatial resolution (50m) to NPSAT

Transport Simulation in the NPSAT Simulation Framework

computationally intensive, but scenario-independent

- 100 particles per well
- Backward particle tracking
 - "Ichnos" software (manuscript in review) – particle tracking in variable meshes
 - Identify the source area for each well
 - Calculate the age of water
 - Porosity is set constant to 10%
- Unit Response functions
- Convolution w/ input history
- Well BTC

input history is user-scenario dependent

• Statistical Summary computationally fact

Well screen 0 years 200 years

Scenario Comparison

CV-NPSAT web

UNIVERSITY OF CALIFORNIA

Groundwater Protection Targets

Stakeholder Engagement

Thank You!

- https://groundwater.ucdavis.edu
- Contact Dr. Thomas Harter at ThHarter@ucdavis.edu

