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Outline

• Overview of spring wheat production in California 
with emphasis on Sacramento Valley conditions

• How can we construct a N budget for wheat?

• How does management influence crop N 
requirements?

• How can site-specific, real-time measurements 
assist in determining crop N needs?



Background: Spring wheat production in California

• Acreage :
≈ 400,000 - 700,000 ac yr-1

mostly hard red/white;

• 40-60% grown for grain

• Yields ≈ 5000-6000 lb ac-1

• Grain growers receive payment for 
quantity ± quality

• Protein (quality) varies by region ≈
11-14%

Image courtesy: California Wheat Commission



Nitrogen-related management in CA spring wheat

• Irrigation varies by region:
• More opportunistic in the 

Sacramento Valley
• More standard in the southern 

part of the state and 
Intermountain area

• Many  growers in the Sacramento 
Valley split N applications between 
sowing and tillering-stem 
elongation
• Total rates: 100 – 225 lb acre-1

Image courtesy: California Wheat Commission
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Why should we care about site-specific N 
management in wheat?



Why should we care about site-specific N 
management in wheat?

N applied at the Right Rate & 
Right Time:
• Improves fertilizer use 

efficiency
• Increases the value of the 

crop



Why should we care about site-specific N 
management in wheat?

• N management plan 
implementation



Wheat response to N fertilizer addition at various 
growth stages is generally well-understood

Image courtesy: U. Kentucky



• Crop N demand varies according 
to the protein yield potential of 
the crop 
[WHAT IS A REASONABLE YIELD 

EXPECTATION?].

Water is more limiting than N 

[IRRIGATION?].

• Crop N demand varies across 
the growing season [TIMING 
MATTERS].

• [SOIL] supplies a large portion of 
N to the crop.

Yield = 7500 lb acre-1 ; Protein = 12%

Constructing a N budget for wheat
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Constructing a N budget for wheat: methods



Right Rate? Irrigated wheat 
Sacramento Valley

7500 lb acre-1; 12% protein

• Apparent N demand:
900 lb ac-1 – 300 lb ac-1 = 600 lb ac-1

600 lb ac-1 / 5.7 = 105 lb ac-1

105 lb ac-1 / 0.5 (apparent N recover in 

grain ≈ 63% overall NUE) = 210 lb ac-1

2.6 lb N / 100 lb grain

• Apparent N demand:
900 lb ac-1 – 300 lb ac-1 = 600 lb ac-1

600 lb ac-1 / 5.7 = 105 lb ac-1

105 lb ac-1 / 0.4 (apparent N recovery 

in grain ≈ 50% overall NUE) = 263 lb ac-1

3.7 lb N / 100 lb grain



Right Rate? Supplementally irrigated wheat 
Sacramento Valley

5500 lb acre-1; 11% protein
• protein yield = 605 lb ac-1

2500 lb acre-1; 8% protein 
• protein yield = 200 lb ac-1

• Apparent N demand:
605 lb ac-1 – 200 lb ac-1 = 405 lb ac-1

405 lb ac-1 / 5.7 = 71 lb ac-1

71 lb ac-1 / 0.5 = 142 lb ac-1

2.6 lb N / 100 lb grain

• Apparent N demand:
605 lb ac-1 – 200 lb ac-1 = 405 lb ac-1

405 lb ac-1 / 5.7 = 71 lb ac-1

71 lb ac-1 / 0.4 = 178 lb ac-1

3.2 lb N / 100 lb grain



Right Rate? Rainfed wheat 
Sacramento Valley

4000 lb acre-1; 12.5% protein
• protein yield = 500 lb ac-1

2500 lb acre-1; 8% protein 
• protein yield = 200 lb ac-1

• Apparent N demand:
500 lb ac-1 – 200 lb ac-1 = 300 lb ac-1

300 lb ac-1 / 5.7 = 53 lb ac-1

53 lb ac-1 / 0.5 = 106 lb ac-1

2.6 lb N / 100 lb grain

• Apparent N demand:
500 lb ac-1 – 200 lb ac-1 = 300 lb ac-1

300 lb ac-1 / 5.7 = 53 lb ac-1

53 lb ac-1 / 0.4 = 133 lb ac-1

3.4 lb N / 100 lb grain

Range of N demand:
106 – 263 lb ac-1

• Depends on:
Water availability
Fertilizer Use Efficiency



Right Time?

A. Preplant N only

B. Tillering-Flowering N
• 16% higher yield
• > 1% higher protein



Right Time?
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Right Time?





















Right Time?



Timing of N application affects 
YIELD

• Applications of N at 
Tillering and Boot 
boost yields 
compared to Preplant
applications

• Assuming sufficient 
water follows N 
application



Timing of N application affects 
PROTEIN

• Applications of N at 
Boot and Flowering
boost grain protein 
content relative to 
other application 
timings
• Assuming sufficient 

water follows N 
application

• Assuming crop has 
sufficient yield 
potential

N timing effect on PROTEIN

N fertilizer timing
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Timing of N application affects 
FERTILIZER USE EFFICIENCY

• In-season applications 
of N boost grain 
fertilizer recovery 
compared to pre-plant 
applications
• Interacts strongly with 

water availability & 
timing

• Large range of 
possibilities (0.3 – 0.70)



How much N will the SOIL supply?

Multiple ways to estimate, many things to estimate…

• One method (top 1 foot)

– ppm NO3-N x 4 

• Example: 12ppm NO3-N x 4 ≈ 48 lb ac-1

• Prior Crop:

– Tomato residue estimated at 50 lb ac-1 returned, but probably 
reflected in soil nitrate test

– Alfalfa contribution ≈ 100 lb ac-1 +

• In-season soil organic matter N mineralization: 

– 0.8% OM % x 30 lb N / % OM ≈ 24 lb ac-1



A brief note on other small grains:

• Barley and Oats require substantially less N
• Optimal yields can be achieved between 50 and 

120 lb N / acre

• Durum wheat may require 130% N to achieve 
quality targets
• good timing can help



What tools are available to assist in real-time N 
management in wheat?

AtLEAF Chlorophyll Meter ≈ $250 Greenseeker handheld NDVI ≈ $500

Soil Nitrate Quicktest < $50 LAQUA NO3 ISE ≈ $500
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Image courtesy: Oklahoma State University

Site-specific calibration?

Field rate + 50%



Objective: Decision support thresholds that inform 
whether and how much N to apply at any given 

point in the crop cycle.



Results: Calibration
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Results: Calibration
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Results: Calibration
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Summary

1. N demand varies across the season & from field-to-
field, depends on water availability, timing.

2. The timing of N application can influence yield, protein 
and fertilizer use efficiency.

3. The use of site-specific, real-time measurements can 
provided actionable information about whether and 
how much N fertilizer to apply.

4. Combining information from more than one test may 
improve the ability to predict outcomes in-season. 
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