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Cumulative Daily/Monthly Precipitation (inches)
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Current surface water & groundwater situation

Northern Sierra Precipitation: 8-Station Index, January 19, 2023
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Sustainable groundwater management

Cumulative Groundwater Loss
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How do we remedy groundwater
overdraft of 2-4 MAF per year?




Current plans to address groundwater overdraft

Basin Priority — FINAL
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Total amount: 2,241 tafly

PPIC, 2020, A Review of San Joaquin Valley Groundwater Sustainability Plans

Department of Water Resources, Pubic Aflairs Office December 18, 2019
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Capture high-magnitude flows
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California Flood-MAR program
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California Flood-MAR program
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Home | Waterrights | Waterlssues : Programs : Applications | Groundwater Recharge : Streamlined Permits

Streamlined Processing for Standard Groundwater
Recharge Water Rights

v
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o FAQs
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The state legislature enacted the Sustainable Groundwater management Act (SGMA) to address widespread overdraft and other undesirable
results caused by groundwater conditions in California’s groundwater basins. SGMA requires local agencies in high and medium priority
basins to develop plans that achieve sustainability in the basin within 20 years of implementation. Groundwater recharge is likely to be an
important part of achieving sustainability in groundwater basins, but local agencies may lack the water rights to divert and use that water
later. The streamlined permitting process for diversion of high flows to underground storage was developed, in part, to assist local agencies to
obtain necessary water rights. Those water rights will, in turn, help Groundwater Sustainability Agencies (GSAs) reach their sustainability

goals more quickly. ﬁ DWR, 2019
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* Crop tolerance b § S & g ° Cost & incentives

* Soil suitability | ‘:,,-.f;'f_; * Water rights
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Risk of groundwater contamination
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Site-specific nitrogen management

120
infiltration: ~0.1m/d
: gl = 80
ol 177 cm recharge
Low N source water =2 S £ 4
: o .
= o ®
fre 0 —eo0—o o O 3
16 -CYJ °
a - Z 4
= AT
< EERCIN e =
@ y—9

Vineyard (4-weeks)

NO,-N leached
[g m?]

Vineyard (2-weeks) = B3 ©
E2l ¢ e

Terranova (8-days) o Lot ot o o -
16

infiltration : ~0.2m/d

-
N
I

L2 os | e 204 cm recharge
£

o
'S
I

2-week flooded

0 2 4 6 8 10 12 14 16 ; ,
Time from start of flooding 2/24/2020 3/5/2020 3/15/2020  3/25/2020 4142020

Time
fdl ® 02m ® 1m

Levintal et al. 2022, ES&T in pre Ponding
prep ® 0.6m e




Site-specific nitrogen management
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Nitrogen cycling processes
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Murphy et al. 2021, VZJ; Levintal et al. 2022, Crit. Rev ES&T
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Site-specific nitrogen management

Low N source water

Murphy et al. 2021, VZJ; Levintal et al. 2022, Crit. Rev ES&T Beganskas et al. 2018, WR; Gorski et al. 2019, ES&T
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NO3-N (mg/L)

MODFLOW Modeling of Orchard Groundwater
MODFLOW Modeled and Observed Groundwater NO3-N Concentrations Across Orchard
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e Even with High Frequency Low Concentration fertilization, model
predicts ~30 years to see NO,-N reduction in Groundwater!!
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Nitrate leaching risk

Soil surface

Almond orchard - Modesto
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Effect of Ag-MAR on groundwater nitrate
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Decision support

€  © | casoilresource.lawr.ucdavis.edu/sagbi/ ¢ Q Search B8 9 3 A © @ 4

SAGBI | Soil Agricultural Groundwater Banking Index
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SAGBI Factors

The SAGBI is based on the following factors: ) ]
SAGBI Rating (modified):
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Component: Brentwood
View all factor scores

Root Zone Residence Time

15 -29 Poor

Chemical Limitations 0-15 Very Poor
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Hartley,

O’Geen et al. 2015, CalAg



Soil-crop relationships

. . Infiltration Water applied Deep Yield - compared
Crop SAGBI rating Soil texture rate (in/hr) (ft) percolation (%) to control (%)
Alfalfa  Good stoner gravelly coarse 3.9 28 99 90
loam
Almond Moderately good Dinuba fine sandy loam 2.7 2 87 99
Tomato Moderately poor Traver fine sandy loam 0.24 1.95 85 125
Almond Moderately poor Tehama silt loam* 0.25 0.4 77 -

* Soil with hardpan



Soil trafficability after deep wetting

Trafficability and risk
of soil compaction

Devine et al. 2021, J. of Soil & Tillage Research
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Soil trafficability after deep wetting

Time-to-trafficability after deep soil wetting

ABOUT SOIL TRAFFICABILITY

A Background

The time-to-trafficability SoilWeb product
is intended to help California growers
identify when fields are generally
trafficable after deep soil wetting during
crop dormancy or winter fallow periods.
The tool applies to wetting situations such
as managed aquifer recharge projects and
large rain or flood events. The primary
objective of the app is to help growers
avoid physical soil damage by agricultural
vehicles, so estimates are relatively
conservative.

See the topics below to better understand
this SoilWeb product.

Use the "Soil Trafficability" tab to modify
the trafficability estimate and map
settings.
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¥ Feedback
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Targeted recharge near vulnerable communities

https://agra.ucdavis.edu

Agricultural Groundwater Recharge Assessment (AGRA)

Suitable parcels for ag-MAR that can benefit community water supplies
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* Increased groundwater storage for next drought

* Fill up soil profile prior to growing season

* Frequency of wet years is decreasing (every 5-7 years)

~_ * Additional moisture stimulate mineralization (natural production of
~—  nitrate in soils)

* Recharge with low nitrogen source water does dilute elevated
groundwater nitrate concentrations

* Management of soil salinity
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