Nitrogen use efficiency in field crops

NITROGEN MANAGEMENT PLAN WORKSHEET

1. Crop Year (Harvested):	 4. APN(s):	5. Field(s) ID	
2. Member ID#			
3. Name:			

CROP NITROGEN MANAGEN	MENT PLANNING	N APPLICATIONS/CREDITS	26. Recommended/ Planned N	27. Actual N
6. Crop 7. Production Units 8. Projected Yield (Units/Acre) 9. N Recommended (Ibs/ac)		<u>15. Nitrogen Fertilizers</u> 16. Dry/Liquid (lbs/ac) 17. Foliar N (lbs/ac)		
10. Acres Post Production A	Actuals	18. Organic Material N 19. Available N in Manure/Compost (Ibs/ac estimate)		
11. Actual Yield (Units/Acre) 12. Total N Applied (Ibs/ac)		20. Total Available N Applied (lbs per acre) 21. Nitrogen Credits (est)		
13. ** N Removed (Ibs N/ac) 14. Notes:		22. Available N carryover in soil; (annualized lbs/acre)		
		23. N in Irrigation water (annualized, lbs/ac)		
		24. Total N Credits (Ibs per acre)		
		25. Total N Applied & Available		
28. CERTIFIED		PLAN CERTIFICATION 29. CERTIFICATION ME	тнор	Х
20. CERTIFIED	01.	30. Low Vulnerability Area, No Certification 31. Self-Certified, approved training progra	Needed	~
DATE:		32. Self-Certified, UC or NRCS site recommendation 33. Nitrogen Management Plan Specialist		

NITROGEN MANAGEMENT PLAN WORKSHEET

1. Crop Year (Harvested):

4. APN(s)

5. Field(s) ID

Objectives:

- Require growers to give more attention to efficient N use
- Allow the Board to estimate the 'Nitrogen balance' for important crops

CROP NITROGEN MANAGEMENT PL	ANNING N APPLICATIONS/CREDITS	26. Recommended/ Planned N	27. Actual N
6. Crop	15. Nitrogen Fertilizers		
7. Production Units	16. Dry/Liquid (lbs/ac)		
8. Projected Yield (Units/Acre)	17. Foliar N (lbs/ac)		
9. N Recommended (Ibs/ac)	18. Organic Material N		
10. Acres			
Post Production Actuals	19. Available N in Manure/Compost (lbs/ac estimate)		
11. Actual Yield (Units/Acre)	20. Total Available N Applied (lbs per acre)		
12. Total N Applied (Ibs/ac)	21. Nitrogen Credits (est)		
13. ** N Removed (Ibs N/ac)	22. Available N carryover in soil;		
14. Notes:	(annualized lbs/acre)		
	23. N in Irrigation water		
	(annualized, lbs/ac)		
	24. Total N Credits (lbs per acre)		

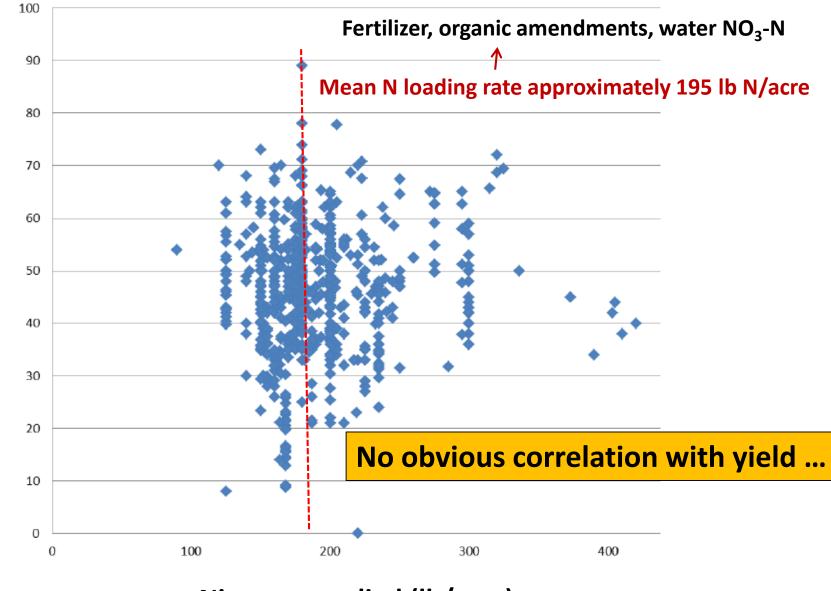
Basic assumption of a 'nitrogen balance' :

 N applied to a field but not removed in harvested products is at risk of eventual loss to the environment, mostly through nitrate leaching

Nitrogen Management Plan Specialis

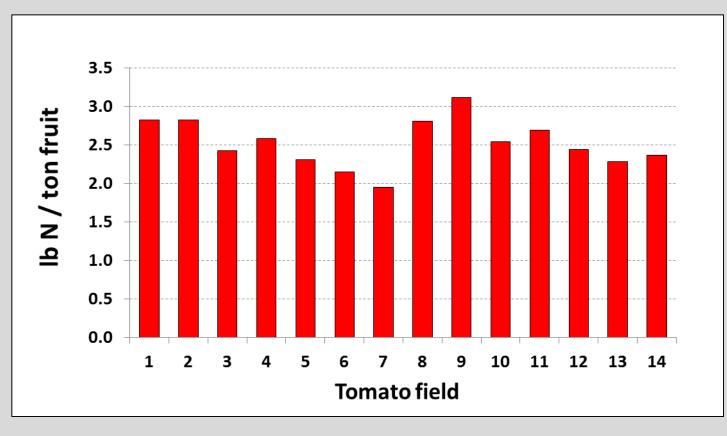
Therefore:

 At similar yield levels, a grower consistently applying substantially more N than his neighbor is probably releasing more N to the environment over time



What does the nitrogen balance for processing tomatoes look like? It depends on:

- Amount of N loading (fertilizer, amendments, irrigation water NO₃-N)
- Fruit yield
- How you do the calculation
 - simplest form (seasonal N input harvest N removal)


2013 Survey of processing tomato growers:

Marketable yield (tons/acre)

Nitrogen applied (lb/acre)

Sampling in many commercial fields provides crop N uptake information:

- Fruit varies in N content, averaged approximately 2.6 lb/ton; other estimates slightly higher (up to 3 lb N/ton?)
- Harvested fruit averaged 55-65% of total crop N uptake

Lazcano et al., 2015, California Agriculture 69:222-229

Yield effects on N dynamics:

No.		Approximate amount of N/acre		
	Yield (tons/acre)	Crop N uptake	N in harvested fruit	N in residue
	40	200	110	90
	50	230	140	90
	60	270	170	100
	70	310	200	110

Yield effects on N dynamics:

A.M.		Approximate amount of N/acre		
	Yield (tons/acre)	Crop N uptake	N in harvested fruit	N in residue
	40	200	110	90
	50	230	140	90
	60	270	170	100
0	70	310	200	110

Tomatoes take up a significant amount of non-fertilizer N

Approximate N balance:

N input - N in harvested fruit

Assuming 195 lb N/acre total loading, 2.8 lb N/ton of fruit				
	Yield (tons/acre)	N in harvested fruit	N balance	
6 93	40	110	85	
2324	50	140	55	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
<u> 1975</u>	60	170	25	
A CONTRACTOR	70	200	-5	

Approximate N balance:

N input - N in harvested fruit

Assuming 195 lb N/acre total loading, 2.8 lb N/ton of fruit				
	Yield (tons/acre)	N in harvested fruit	N balance	
5000	40	110	85	
029363	50	140	55	and water for
05333	60	170	25	
	70	200	-5	

This is not all lost to leaching !!!

- There are other N loss mechanisms
- Typically 80-100 lb N/acre is in the vines; much of that N can be captured by a succeeding crop if the management of that succeeding crop accounts for this carry-over N

N balance for other crops?

https://www.ipni.net/app/calculator/home

Cro	Crops		
${\Rightarrow}$	Alfalfa (DM)		
$\stackrel{\wedge}{\simeq}$	Almonds, with shell		
${\propto}$	Alsike clover (DM)		
${\Rightarrow}$	Apples		
$\dot{\gamma}$	Bahiagrass		
${\Rightarrow}$	Barley grain		
*	Barley straw		

http://plants.usda.gov/npk/main

Nutrient Content of Crops

Select Crops About the Crop Nutrient Tool Nutrient Data Sources Download Crop Nutrient Database

A tool for calculating the approximate amount of nitrogen, phosphorus, and potassium that is removed

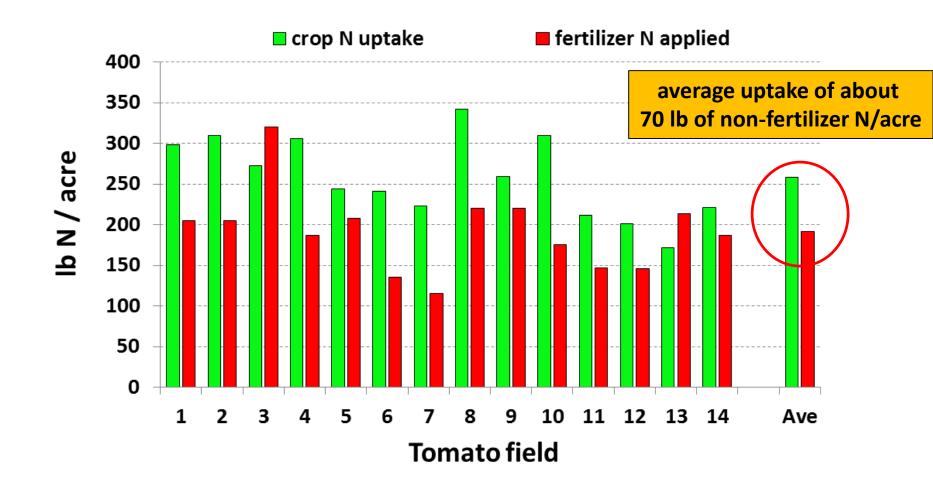
Step 1	OR
Select the crop type(s) in which you are interested. At least one selection must be made:	Enter the full or partial name of a crop (i.e. 'corn'). All crops from any crop type will be displayed on the following page.
Cereal and Oil Crops	The search will be performed so that any crop name containing the string entered will be retrieved.
Forage Crops	containing the string entered win be retrieved.
Fiber and Miscellaneous Crops	
Tree and Fruit Crops	
Vegetable Crops	
liels the butter below to view a list of some associated.	with the even true (a) calcuted above

Click the button below to view a list of crops associated with the crop type(s) selected above.

View Crop List Reset Selections

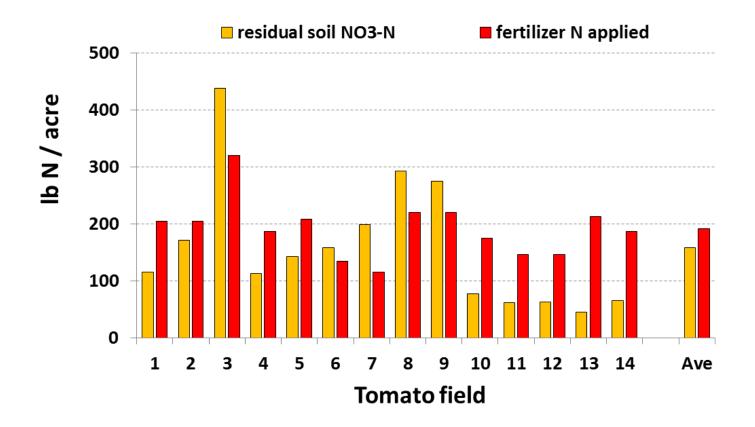
So, how to determine N fertilizer need?

- Since yield and N rate were poorly correlated, use the lower side of current rates as a starting point
- Consider crop N uptake requirement based on realistic yield potential
- Adjust for field-specific factors


Calculating crop N uptake requirement:

- Tomato fruit N content of 2.6 lb N/ton is adequate
- Fruit typically represents about 55-65% of total crop N uptake

Yield goal (tons/acre)	Approximate N uptake requirement* (Ib/acre)
40	195
50	225
60	260
70	300


* N uptake requirement does not mean N fertilizer requirement !!

Non-fertilizer N contributes substantially to crop N uptake:

Lazcano et al., 2015, California Agriculture 69:222-229

Residual soil NO₃-N varies widely, but few growers consider it when formulating N fertilization programs:

Lazcano et al., 2015, California Agriculture 69:222-229

Why is residual soil NO₃-N sampling so important ?

 If measured at or just after transplant establishment, most N mineralization from prior crop residues and amendments has already taken place, and leaching should be controllable (given good irrigation management) How to calculate a 'fertilizer credit' for residual soil NO₃-N ? There is no 'right' answer for all situations

- to what depth?
- only within the irrigation wetted zone?
- what about spatial variability?

Possible approaches:

- Credit all residual NO₃-N in top foot?
- Credit a fraction of residual NO₃-N in whole root zone (50-75% ?)
- Credit all residual NO₃-N above a 'threshold' (5 PPM ?)

Converting PPM soil NO₃-N to lb N/acre:

- Assume mineral soil weights about 3.7 million pounds per acre foot
 PPM NO₃-N x 3.7 = lb N/acre foot
- High organic matter soils may weigh as little as 2.2 million pounds per acre

Irrigation efficiency is important:

 At normal levels of in-season soil NO₃-N, each inch of leaching could remove >15 lb N/acre from the root zone

Crediting NO₃-N in irrigation water :

- California research shows that irrigation water NO₃-N is as efficient as fertilizer N
- However, a conservative approach is to count only the NO₃-N contained in water transpired by the crop

Example:

- Processing tomato transpires about 25 inches of water
- If irrigation water NO₃-N is 6 PPM, the 'fertilizer credit' would be: 6 PPM NO₃-N x 0.23 = 1.4 lb NO₃-N per acre · inch
 1.4 lb NO₃-N per acre · inch x 25 inches = 35 lb NO₃-N per acre

In summary:

- At current levels of fertilization, most crops show a substantial positive N balance (more N applied than removed in harvested products); minimizing that N balance will reduce regulatory interest in your operation
- Efficient use of residual soil NO₃-N can reduce N fertilization rates and improve N balance across crop rotations
- In-season N leaching losses are controlled by efficient irrigation